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Abstract
We consider the problem of determining the state of a quantum system given
one or more readings of the expectation value of an observable. The system
is assumed to be a finite-dimensional quantum control system for which
we can influence the dynamics by generating all the unitary evolutions in
a Lie group. We investigate to what extent, by an appropriate sequence of
evolutions and measurements, we can obtain information on the initial state of
the system. We present a system theoretic viewpoint of this problem in that
we study the observability of the system. In this context, we characterize the
equivalence classes of indistinguishable states and propose algorithms for state
identification.

PACS numbers: 03.65.Ta, 02.30.Yy

1. Introduction

Given a control system

ẋ = f (t, x, u) (1)

where u represents the control function, x the state varying on a manifold M, with output
y = y(x), denote by x(t, u, x0) the solution of (1) with control u, initial condition x0, at
time t. Two states x01 and x02 are said to be indistinguishable (see, e.g., [26]) if, for every
control u and every time t, we have y(x(t, u, x01)) = y(x(t, u, x02)). A system is said to be
observable if no two states in M are indistinguishable.

In this paper, we are interested in the observability properties of quantum control systems
whose dynamics are described by the Liouville’s equation for the density matrix ρ (see, e.g.,
[3]),

i
d

dt
ρ = [H(u(t)), ρ]. (2)

We shall restrict ourselves to the finite-dimensional case where ρ is an n × n matrix. The
Hamiltonian H(u(t)) is an n × n Hermitian matrix, in general, function of one or more

0305-4470/03/379721+15$30.00 © 2003 IOP Publishing Ltd Printed in the UK 9721

http://stacks.iop.org/ja/36/9721


9722 D D’Alessandro

control functions u(t). We have assumed here and will assume in the rest of the paper that
we are dealing with closed (noninteracting with the environment if not through the control
functions and during the measurement process) quantum system. We assume that we perform
a measurement of the mean value of an observable, represented by the Hermitian matrix S. In
this case the output y takes the form

y = Tr(Sρ). (3)

Since Tr(ρ) ≡ 1, it will be convenient to replace ρ with the traceless matrix ρ − 1
n
In×n and S

with the traceless matrix S− Tr(S)

n
In×n. This has the effect of ‘shifting’ the value of the output by

a constant Tr(S) value which does not play any role in the indistinguishability considerations
that will follow. Therefore we will set in the following Tr(ρ) = 0 and Tr(S) = 0. The solution
of (2) varies as

ρ(t) = X(t)ρ(0)X∗(t) (4)

with X solution of the Schrödinger equation,

Ẋ(t) = −iH(u(t))X X(0) = In×n. (5)

From known results in the theory of quantum control (see, e.g., [16, 19, 23], and see [9, 18]
for the non-bilinear case), X can be driven to every value in the Lie group eL corresponding
to the Lie algebra L generated by spanu∈U {iH(u)} where U denotes the set of possible values
for the control. With initial condition ρ(0), Hermitian and with trace zero, the density matrix
ρ can attain all the values in the orbit

O := {Xρ(0)X∗|X ∈ eL}. (6)

A study of the observability of control systems involves two main things. First, one would
like to collect, in equivalence classes, initial states that cannot be distinguished by varying
the control and measuring the output (see the next two sections for definitions in our case).
Second, one would like to have methods to infer the equivalence class of the initial state
from appropriate sequences of measurements and evolutions. We consider these problems for
quantum control systems in this paper.

The question of determination of the state of a quantum system from measurements is
at the heart of quantum mechanics and it was already discussed by Pauli in [22]. Several
contributions have appeared in recent years and a discussion of the problem in general terms
can be found in [6], where, like in the present paper, the problem of determination of the initial
state (as opposed to the current state) was described. We present in this paper a treatment of
this topic from a system theoretic view point. In this context, our study is closely related to
other studies of the observability of nonlinear systems [15, 17, 21] (see also [8] for systems
varying on the Lie groups). However we consider here a specific model for which we can
obtain more complete results. Moreover a new element appears in the treatment of quantum
systems, that is the transformation of the state as a result of each measurement. This can take
different forms according to the type of measurement considered (see, e.g., [4, 7, 10]). We
shall mainly consider the case of Von Neumann measurement [24, 27] and discuss extensions
to other cases.

The paper is organized as follows. In section 2 we define and describe the set of states
that cannot be distinguished in one measurement. Then, we generalize in section 3 to states
that cannot be distinguished in multiple measurements. The determination of the state from
one or more measurements is discussed in section 4. Conclusions are given in section 5.
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2. Indistinguishability and observability with a single measurement

In the following, S is the traceless Hermitian matrix representing the observable and ρ(t, u, ρ0)

is the solution of (2) at time t, with initial condition equal to ρ0, and control u.

Definition 1. Two states ρ1 and ρ2 are indistinguishable in one step if, for every control
function(s) u and every t, we have

Tr(Sρ(t, u, ρ1)) = Tr(Sρ(t, u, ρ2)). (7)

The definition asserts that two states ρ1 and ρ2 are indistinguishable if there is no
admissible experiment involving only one measurement which would give different results
with initial states ρ1 and ρ2. It is clear that indistinguishability in one step is an equivalence
relation. The set of possible values for the density matrix will be denoted by R. It is a convex
subset of the vector space of n×n Hermitian matrices (with zero trace), isu(n) and, in general,
the vector space spanned by the elements of R is the same as i(su(n)). The elements of R are
parametrized by n2 − 1 = dim su(n) parameters1.

Definition 2. The system is observable in one step if ρ1 and ρ2 ∈ R are indistinguishable in
one step only when ρ1 = ρ2.

Instrumental in the characterization of classes of indistinguishable states is the vector
space of n × n skew-Hermitian matrices,

V := ⊕∞
k=0adk

LiS. (8)

Here adk
LiS is the space obtained by taking k Lie brackets of iS with elements in the Lie

algebra L. We shall call V , observability space. If B1, . . . , Bm is a set of generators of the
Lie algebra L, it follows from an application of the Jacobi identity (see appendix A) that the
observability space V is spanned by the matrices2

ad
k1
Bj1

ad
k2
Bj2

· · · ad
kr

Bjr
iS (9)

with k1, . . . , kr � 0, and {j1, . . . , jr} ∈ {1, . . . , m}. V is the smallest subspace of su(n) stable
under L and containing iS.3 V might not be the Lie Algebra, however, it is always a subspace
of the Lie Algebra generated by iS,B1, . . . , Bm and therefore a subspace of su(n). Therefore
its dimension is bounded by dim su(n) = n2 − 1. Note that V can be calculated with an
algorithm that, at each step, calculates the matrices of ‘depth’ d + 1 from the matrices of depth
d, where the depth is the number of Lie brackets performed, namely k1 + k2 + · · · + kr in (9).
The algorithm starts with the matrix iS, which has depth 0, and ends when the dimension
reaches n2 − 1 or there is no increment in the dimension. By finite dimensionality, there is
always a finite k̄ such that

V = ⊕k̄
k=0adk

LiS. (10)

We have the following result that relates the partition of the state space into classes of
indistinguishable states with the properties of the observability space V .

Theorem 1. The following three conditions are equivalent

1. The states ρ1 and ρ2 are indistinguishable in one step.
1 In the presence of special symmetries, a parametrization with fewer parameters can be given (see [2] for an
example).
2 adk

RT := [R, [R, . . . [R, T ]]], where the Lie bracket is taken k times.
3 [L,V] ⊆ V .
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2. For every X ∈ eL,

Tr(X∗SXρ1) = Tr(X∗SXρ2). (11)

3. For every F ∈ V ,

Tr(Fρ1) = Tr(Fρ2). (12)

Proof. The equivalence between conditions 1 and 2 simply follows from the fact that the set
of values obtainable for ρ starting from ρ(0) = ρ1,2 is described in (6), and from elementary
properties of the trace.

Now assume (11) holds and choose k matrices R1, . . . , Rk (not necessarily all different)
in L. Then, for every k−ple of real numbers t1, . . . , tk we have

Tr(e−R1t1 · · · e−Rktk iS eRktk · · · eR1t1ρ1) = Tr(e−R1t1 · · · e−Rktk iS eRktk · · · eR1t1ρ2). (13)

Calculating the derivative, ∂k

∂t1∂t2···∂tk t1=t2=···=tk=0
, of both sides we obtain

Tr
(
adR1adR2 · · · adRk

iSρ1
) = Tr

(
adR1adR2 · · · adRk

iSρ2
)

(14)

which proves condition 3, since k and Rj , j = 1, . . . , k, are not specified. To prove that
condition 3 implies condition 1, let F1, . . . , Fs be a basis of V with F1 = iS. Then we have,
using (2),

d

dt
Tr(Fjρ(t, u, ρ1,2)) =

s∑
k=1

aj,k(t) Tr(Fkρ(t, u, ρ1,2)) (15)

for some (time-varying) coefficients aj,k(t) depending on the control u. Therefore we have
that Tr(Fjρ(t, u, ρ1)) and Tr(Fjρ(t, u, ρ2)) satisfy the same (linear) system of differential
equations and since the initial conditions are the same, then

Tr(Fjρ(t, u, ρ1)) = Tr(Fjρ(t, u, ρ2)) j = 1, . . . , s. (16)

In particular, we have,

Tr(Sρ(t, u, ρ1)) = Tr(Sρ(t, u, ρ2)). (17)

Therefore the two states are indistinguishable. �

The inner product 〈·, ·〉 in su(n) is defined as 〈A,B〉 = Tr(AB∗). Theorem 1 states that
two matrices inR are indistinguishable if and only if they differ by an element inV⊥. Therefore
we can state the following criterion of observability in one step which is a consequence of
theorem 1.

Theorem 2. System (2) is observable in one step if and only if one of the following equivalent
conditions are verified

1. spanX∈eLX
∗iSX = su(n) (18)

2. V = su(n). (19)

Remark. The notion of observability is closely related to the notion of informational
completeness of observables as treated for example in [14]. A set of observables B is called
informationally complete if Tr(Bρ1) = Tr(Bρ2) for every B ∈ B implies ρ1 = ρ2. From
condition 2 of theorem 1 and the definition of observability, we can say that a system is
observable if and only if the set of operators {X∗SX|X ∈ eL} is informationally complete.
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2.1. Relation between controllability and observability in one step

If L = su(n), namely the system is operator controllable [1], and S 
= 0, then it is also
observable. In fact, in this case, we have

spanX∈eLX∗iSX = spanX∈SU(n)X
∗iSX = su(n). (20)

To verify this we can more easily verify condition (19). Since V is a nonzero ideal of su(n)

and su(n) is a simple Lie algebra, V must be equal to su(n). Therefore we have

Corollary 3. Controllability along with S 
= 0 implies observability in one step.

The converse of corollary 3 is not true not only because we may have the equality

{X∗SX|X ∈ eL} = {X∗SX|X ∈ SU(n)} (21)

even though L 
= su(n) [1, 25] but also because we may have (18) (19) even though (21) is
not verified. A simple example of this can be found already in the n = 2 case by taking

iS =
(

i 1
−1 −i

)
L = span

{(
0 1

−1 0

)}
. (22)

2.2. First-order conditions for observability in one step

The case of the equality of the orbits in (21) is particularly favourable because we can give a
different condition of observability which avoids the calculation of the repeated Lie brackets
for V and involves only the calculation of Lie brackets of depth 1. We have the following
proposition.

Proposition 4. Assume S 
= 0. The system is observable in one step if one of the following
two equivalent conditions is verified

1. {X∗SX|X ∈ eL} = {X∗SX|X ∈ SU(n)} (23)

2. [L, iS] = [su(n), iS]. (24)

From a practical point of view condition (24) may be easier to verify since it involves
calculation of the first-order Lie brackets only. The condition tells us that by calculating the
first-order Lie brackets, we can infer the properties of V which is defined through higher order
Lie brackets. If condition (24) is not verified we may still have observability.

Proof. The equivalence between the conditions (20) and (23) was proved in [1] although in a
different context4, therefore we shall not repeat the proof here. Clearly (23) implies (18) with
(20) and (19) and therefore observability. �

Condition (24) can be verified by comparing the dimensions of the two vector spaces.
The dimension of [iS, su(n)] can be expressed in terms of the multiplicity of the eigenvalues
of iS (recall that iS is not zero and it has zero trace so it has at least two distinct eigenvalues).
We have

dim[iS, su(n)] = 2
∑
j<k

njnk (25)

where nj (nk) is the multiplicity of the jth (kth) eigenvalue.
4 There, S was the density matrix and we wanted to give practical conditions to verify that the set of possible density
matrices that can be obtained by varying X in eL is the same as the largest possible one namely the one obtained by
varying X ∈ SU(n). This condition was called density matrix controllability.
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If iS is known to be in a proper subspace F of su(n) stable under L (e.g., L itself or L⊥)
then we cannot have observability because V ⊆ F 
= su(n).

Example. Two spin 1
2 particles are interacting through Ising interaction and are driven by an

electro-magnetic field in the x direction [11, 12]. The magnetic field couples with one of the
spins only and we can detect the magnetization in the z direction. Denote by σx,y,z the x, y, z

Pauli matrices (see, e.g., [24])

σx := 1

2

(
0 1
1 0

)
σy := 1

2

(
0 −i
i 0

)
σz := 1

2

(
1 0
0 −1

)
(26)

by 1 the 2 × 2 identity matrix and by u = u(t) the x component of magnetic field. After
appropriately scaling the parameters involved, the Hamiltonian H has the form

H = σz ⊗ σz + u(t)σx ⊗ 1 (27)

and the output matrix S is given by S = σz ⊗ 1 + 1 ⊗ σz. The dynamical Lie algebra L is
spanned by iσz ⊗ σz, i1 ⊗ σx and iσz ⊗ σy . We have from formula (25) dim[iS, su(n)] = 8
while dim[iS,L] = 2. Therefore the sufficient criterion of observability of proposition 4 fails.
Moreover since iS is in L⊥, and L⊥ is stable under L, the system is not observable.

2.3. Decomposition of the state space

It is natural to decompose the state ρ as ρ(t) = ρ1(t) + ρ2(t), with ρ1(t) ∈ V and ρ2(t) ∈ V⊥,
for every t. Then we have

ρ̇1 = −i[H(u), ρ1] (28)

ρ̇2 = −i[H(u), ρ2] (29)

and

Tr(Sρ(t)) = Tr(Sρ1(t)) (30)

for every t. Therefore if we are interested in the effect on the output S we can parametrize
only the component of ρ in V .

3. Indistinguishability and observability with multiple measurements

We now generalize the above characterization of states that are indistinguishable after one
measurement to states that are indistinguishable after k measurements, for general k. In fact
it may happen that, even if two states give the same output function at the first measurement,
for every control and at every time, they give different values at the second measurement.
This is a consequence of the fact that the first measurement modifies the state. Modern
quantum measurement theory (see, e.g., [4, 7, 10]) has studied ways to model the change in
the state due to measurement as well as ways to integrate the measurement process in the
framework of quantum dynamics. We shall remark at the end of this section on possible
extensions to other types of measurements but will consider the simplest case where the
quantum measurement postulate [24, 27] holds. This is also called Von Neumann (or Von
Neumann–Lüders) measurement. More precisely, rewrite the observable matrix S (assumed
nondegenerate) as

S =
n∑

j=1

λjaja
∗
j :=

n∑
j=1

λj�j (31)
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where aj are the orthonormal eigenvectors of S,�j , j = 1, . . . , n, are the associated projection
matrices defined by �j := aja

∗
j and λj are the associated eigenvalues. Define the

automorphism P in the space of (skew)Hermitian matrices

P(F ) =
n∑

j=1

�jF�j (32)

which returns the diagonal part of F, if we are working in a basis where S is diagonal. If the
state at the time of the measurement is ρ(t, u, ρ0), according to the measurement postulate,
the state after the measurement is P(ρ(t, u, ρ0)). Assume that the experiment consists of an
evolution for time t1 with control u1, followed by a measurement, followed by an evolution
for time t2 with control u2, followed by a measurement, and so on, up to an evolution for time
tk with control uk . The kth measurement, at time t1 + t2 + · · · + tk , gives the result

yk(t1, . . . , tk, u1, . . . , uk, ρ0) := Tr(Sρ(tk, uk,P(ρ(tk−1, uk−1,P(· · ·P(ρ(t1, u1, ρ0))))))).

(33)

We can extend definitions 1 and 2 as follows:

Definition 3. Two states ρ1 and ρ2 are indistinguishable in k steps if for every sequence of
control function(s), u1, u2, . . . , uk , defined in intervals [0, t1), [0, t2), . . . , [0, tk], we have

yk(t1, . . . , tk, u1, . . . , uk, ρ1) = yk(t1, . . . , tk, u1, . . . , uk, ρ2). (34)

Definition 4. A system is observable in k steps if no two states are indistinguishable in k steps.

Definition 5. Two states are indistinguishable if they are indistinguishable in k steps for every
k � 1. A system is said to be observable if no two states are indistinguishable.

It is convenient to rewrite the output at the kth measurement in terms of the values of the
evolution operator X in (5) at the endpoints of the intervals [0, t1), . . . , [0, tk]. We call these
values of X,X1, . . . , Xk . Using (4), we have

yk := yk(X1, . . . , Xk, ρ0) = Tr(SXkP(Xk−1P(· · ·P(X1ρ0X
∗
1) · · ·)X∗

k−1)Xk). (35)

Therefore an alternative definition of indistinguishability in k steps can be given, that is ρ1

and ρ2 are indistinguishable if for every set of values X1, . . . , Xk in eL, yk(X1, . . . , Xk, ρ1) =
yk(X1, . . . , Xk, ρ2).

We can give conditions of indistinguishability and observability as in theorems 1 and 2,
by introducing generalized observability spaces. More specifically, define the observability
space of order 0, V0 := span{iS}, and the observability space of order 1, V1 := V in (8). The
observability space of order k, Vk , is defined recursively by

Vk := ⊕∞
j=0ad

j

LP(Vk−1). (36)

It is the largest subspace of su(n) containing P(Vk−1) and stable under L. It also follows from
a proof analogous to the one in appendix A that, if B1, . . . , Bm is a set of generators of the Lie
algebra L,Vk is spanned by the matrices

ad
k1
Bj1

ad
k2
Bj2

· · · ad
kr

Bjr
F (37)

with F ∈ P(Vk−1), k1, . . . , kr � 0, and {j2, . . . , jr} ∈ {1, . . . , m}. Note also that it follows
by induction, since V0 ⊆ V1, that

Vk−1 ⊆ Vk (38)

for every k � 1.
We have the following generalization of theorem 1.



9728 D D’Alessandro

Theorem 5. The following three conditions are equivalent

1. The states ρ1 and ρ2 are indistinguishable in k steps.
2. For every k−ple X1, . . . , Xk with values in eL,

Tr(X∗
1P(X∗

2P(· · ·P(X∗
k−1P(X∗

kSXk)Xk−1) · · ·)X2)X1ρ1)

= Tr(X∗
1P(X∗

2P(· · ·P(X∗
k−1P(X∗

kSXk)Xk−1) · · ·)X2)X1ρ2). (39)

3. For every F ∈ Vk ,

Tr(Fρ1) = Tr(Fρ2). (40)

It follows from (40) and (38) that if two states are indistinguishable in k steps they are
indistinguishable in r steps for every r < k. In other terms if we can distinguish two states in
r steps we can distinguish them in k > r steps as well.

Proof. If ρ1 and ρ2 are indistinguishable, then, for all the X1, . . . , Xk in eL, we have
yk(X1, . . . , Xk, ρ1) = yk(X1, . . . , Xk, ρ2) in (35). Now note that, for a general ρ0,

Tr(SXkP(Xk−1P(· · ·P(X1ρ0X
∗
1) · · ·)X∗

k−1)X
∗
k )

= Tr(X∗
kSXkP(Xk−1P(· · ·P(X1ρ0X

∗
1) · · ·)X∗

k−1))

= Tr(P(X∗
kSXk)Xk−1P(· · ·P(X1ρ0X

∗
1) · · ·)X∗

k−1)

= Tr(X∗
k−1P(X∗

kSXk)Xk−1P(· · ·P(X1ρ0X
∗
1) · · ·))

·
·
·
= Tr(X∗

1P(X∗
2P(· · ·P(X∗

k−1P(X∗
kSXk)Xk−1) · · ·)X2)X1ρ0). (41)

Using this for ρ0 = ρ1 and ρ0 = ρ2 along with (35) we see that indistinguishability of ρ1

and ρ2 in k steps implies equation (39). The proof that condition 2 implies condition 3 is
exactly analogous to the corresponding proof in theorem 1. The proof that condition 3 implies
indistinguishability also is a generalization of the corresponding proof in theorem 1, with some
more elements that we now illustrate. Consider a basis Fj , j = 1, . . . , s, of Vk and derive
a differential equation for Tr(Fjρ(t, u1, ρ1,2)). The differential equations corresponding to
ρ1 and ρ2 are the same with the same initial conditions, because of the assumption (40).
Therefore, in particular, at time t1, we have

Tr(Fjρ(t1, u1, ρ1)) = Tr(Fjρ(t1, u1, ρ2)) (42)

for every Fj ∈ Vk and therefore for every Fj ∈ P(Vk−1). If F̄j , j = 1, . . . , s̄, is a basis of
Vk−1, then we have

Tr(P(F̄j )ρ(t1, u1, ρ1)) = Tr(P(F̄j )ρ(t1, u1, ρ2)) (43)

that is

Tr(F̄jP(ρ(t1, u1, ρ1))) = Tr(F̄jP(ρ(t1, u1, ρ2))). (44)

Now, derive a differential equation for the variables Tr(F̄jρ), with F̄j a basis of Vk−1, on the
second interval of length t2 and with control u2. The function corresponding to ρ1 satisfy the
same differential equation as the function corresponding to ρ2 and since the initial conditions
are the same, from (44), we obtain that for every F̄j in Vk−1

Tr(F̄jρ(t2, u2,P(ρ(t1, u1, ρ1)))) = Tr(F̄jρ(t2, u2,P(ρ(t1, u1, ρ2)))). (45)
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This is, in particular, true for elements of P(Vk−2). Proceeding this way, after k steps, we
obtain the equalities of outputs yk in (33) for ρ0 = ρ1 and ρ0 = ρ2, for every k-tuple t1, . . . , tk
and controls u1, . . . , uk , and therefore indistinguishability. �

An example of V1 
= V2 is given by

S :=
( 1 0 0

0 −3 0
0 0 2

)
L := span

{( i 0 2
0 −i 0

−2 0 0

)}
. (46)

We also have the following theorem concerning observability.

Theorem 6. System (2) is observable in k steps if and only if one of the following equivalent
conditions is verified

1. spanX1,X2,...,Xk∈eLX
∗
1P(X∗

2P(· · ·P(X∗
k−1P(X∗

k iSXk)Xk−1) · · ·)X2)X1 = su(n) (47)

2. Vk = su(n). (48)

A system is observable if and only if there exists a k such that one of the equivalent
conditions (47), (48) is verified.

To check observability we only need to verify (48) for a finite number of k until we find a
k such that Vk−1 = Vk or Vk = su(n).

It is obvious that since controllability (L = su(n)) implies observability in one step it
also implies observability in k steps for every k. The natural extension of the condition (23)
of proposition 4 would be

{X∗
1P(X∗

2P(· · ·P(X∗
k−1P(X∗

kSXk)Xk−1) · · ·)X2)X1|X1, X2, . . . , Xk ∈ eL}
= {X∗

1P(X∗
2P(· · ·P(X∗

k−1P(X∗
kSXk)Xk−1) · · ·)X2)X1|X1, X2, . . . , Xk ∈ SU(n)}. (49)

However we cannot give the Lie Algebraic condition for (49) (which would be an extension
of (24) for this case). Note that (24) is essentially the equality of the tangent spaces at S of the
two manifolds in (23). The main difficulty is that the two sets in (49) are not guaranteed to be
manifolds. For example, if we consider

S :=
(

1 0
0 −1

)
(50)

and eL := SO(2), and k = 2, then we have

{X∗
1P(X∗

2SX2)X1|X1, X2 ∈ eL} =
{(

a b

b −a

)∣∣∣∣ a, b ∈ R,
√

a2 + b2 � 1

}
(51)

which is a manifold with boundary.
Like for the case of indistinguishability in 1 step, we can write

ρ(t) = ρ1(t) + ρ2(t) (52)

with ρ1(t) ∈ Vk and ρ2(t) ∈ V⊥
k , which satisfy the equations (28)–(30). Therefore if we are

interested in the effect on the output S we can parametrize only the component of ρ in Vk . In
particular, if Vk is the largest of the observability spaces we can neglect the component ρ2(t)

of the state since it will not have any effect on any measurement.

Remark. The above treatment, which has been presented for Von Neumann measurements,
can be extended to more general types of measurements (see, e.g., [4, 5, 7, 10, 13]). We have
used the fact that, according to the measurement postulate, the state changes as ρ → P(ρ).
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For a more general measurement, with a countable set of possible outcomes M, the state will
change according to

ρ → F(ρ) :=
∑
m∈M

�m(ρ). (53)

The super-operators �m are called operations and according to Kraus’ representation theorem
[20], under suitable assumptions, can be expressed as

�m(ρ) :=
∑

k

�mkρ�∗
mk (54)

for a countable set of operators �mk . Our treatment will go through by replacing P(ρ) with
F(ρ). In particular, we can define a dual super-operator F∗ acting on observables as

F∗(S) :=
∑
m∈M

�∗
m(S) �∗

m(S) :=
∑

k

�∗
mkS�mk. (55)

This has the property Tr(F∗(S)ρ) = Tr(SF(ρ)) and we can use this to extend the calculations
in theorem 5. Moreover the definition of Vk in (36) has to be replaced by

Vk := ⊕∞
j=0ad

j

LF∗(Vk−1). (56)

4. Initial state determination

We now investigate how much information on the initial state that we can extract from an
experiment which alternates prescribed evolutions with measurements. We deal with a single
experiment and with a single quantum system rather than with many copies of the same system,
as it is done some times in this context. We shall assume, for simplicity, that the system is
controllable namely L = su(n). Moreover, we can assume, without loss of generality, that the
output matrix S is diagonal. We shall use the following formula (see (35), (39)) for the output
at the kth measurement

yk = Tr(X1ρ0X
∗
1P(X∗

2P(· · ·P(X∗
k−1P(X∗

kSXk)Xk−1) · · ·)X2)) (57)

for the unknown initial state ρ0. Now, since every matrix of the type P(·) is diagonal, it follows
from (57) that it is only possible to obtain information on the diagonal elements of X1ρ0X

∗
1

and therefore on at most n − 1 independent parameters of the unknown matrix ρ0. It is in fact
possible to obtain all the n − 1 independent diagonal elements of the matrix X1ρ0X

∗
1 := ρ̃0.

At the first measurement we obtain

y1 = Tr(ρ̃0S). (58)

Then we choose X2 as a permutation matrix so that S2 := X∗
2SX2 is still diagonal but the

diagonal elements are a permutation of the diagonal elements of S. We also have P(S2) = S2

so that, at the second measurement, we obtain

y2 = Tr(ρ̃0S2). (59)

Then we choose the evolution X3 with X3 := X̄3X
∗
2 and X̄3 performing another permutation

of the diagonal elements of S. X̄∗
3SX̄3 := S3. Therefore, the third measurement gives

y3 = Tr(ρ̃0S3). (60)

Continuing this way, we can obtain n! equations for the diagonal elements of ρ̃0, x1, . . . , xn,
i.e.

n∑
k=1

ajkxk = yj j = 1, . . . , n! (61)
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where the elements ajk are appropriate permutations of the diagonal elements of S. To this we
have to add the equation5

Tr(ρ̃0) =
n∑

k=1

xk = 0. (62)

If S is not a scalar matrix, it is always possible to choose n − 1 permutations and therefore
n − 1 equations in (61) that together with (62) have a unique solution. In fact the n! + 1 × n

matrix obtained by placing in the first n! rows all the permutations of the diagonal elements of
S and in the last row 1, 1, . . . , 1 has always rank n. The rank of this matrix is the same as the
rank of a matrix obtained by adding to every row the last row (1, 1, . . . , 1) multiplied by an
arbitrary constant. Therefore we can assume that the elements of the matrix are nonnegative
and apply a lemma in appendix B.

As seen above, in the Von Neumann case, the number of independent parameters that
can be inferred by a sequence of evolutions and measurements is bounded by the dimension
of the system. This suggests to consider different types of measurements to obtain complete
information on the initial state of the system. One possible scheme is as follows. Consider a
system �1 of dimension n, with unknown state ρ1 and couple it with a (large) system �2, of
dimension m, whose state is known to be ρ2. The density matrix of the coupled system ρ at
time 0 is

ρ(0) = ρ1 ⊗ ρ2. (63)

This matrix has dimension nm and only n2 − 1 parameters are not known. Now, if we let ρ

evolve, after time t, the matrix ρ(t) cannot in general be written as a tensor product, since the
two systems are now entangled [28]. If we perform repeated Von Neumann measurement on
the coupled system, we are able to obtain information on nm − 1 independent parameters of
ρ. Since ρ contains n2 − 1 unknown parameters only, we may be able to obtain information
on all of them if m � n. We give now a simple numerical example of this scheme.

The unknown state of a spin 1
2 particle is represented by the density matrix (without shift

of the trace)

ρ1 =
(

m l

l∗ 1 − m

)
(64)

with m real. Two spin 1
2 particles with known state

ρ2 =
( 1

3 0
0 2

3

)
⊗

( 1
3 0
0 2

3

)
(65)

are coupled with it. Therefore the unknown state

ρ0 := ρ1 ⊗ ρ2 (66)

has only three unknown parameters. We can observe some linear combination of the spins in
the direction. A possible associated matrix is given by

S = 4σz ⊗ 1 ⊗ 1 + 21 ⊗ σz ⊗ 1 + 1 ⊗ 1 ⊗ σz (67)

(see (26)) which is diagonal. From formula (57) and the previous discussion we can obtain
the diagonal elements of the matrix X1ρ0X

∗
1 . Consider the vectors

e1 :=
(

1
0

)
e2 :=

(
0
1

)
v1 := 1√

2

(
1
1

)
w1 := 1√

2

(
1
−i

)
. (68)

5 Recall that, without loss of generality, we are considering density matrices with trace equal to zero rather than one.
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If the first three columns of X∗
1 are chosen as

�x1 := e1 ⊗ e1 ⊗ e1

�x2 := v1 ⊗ e1 ⊗ e2 (69)

�x3 := w1 ⊗ e2 ⊗ e1

then we obtain for the diagonal elements

�x∗
1ρ0�x1 = 1

9m

�x∗
2ρ0�x2 = 1

9 (1 + 2 Re(l)) (70)

�x∗
3ρ0�x3 = 1

9 (1 + 2 Im(l)).

From this we can extract the values of m and l.

5. Discussion and conclusion

In this paper, we have presented a treatment of the observability properties of quantum
systems compatible with quantum measurement theory. We have focused on Von Neumann
measurements but indicated extensions to more general types of measurements. We have
given a characterization of states that cannot be distinguished in one or more measurements
and conditions for observability. Contrary to most studies on observability of nonlinear
systems (see, e.g., [26]) conditions for observability and indistinguishability are global in this
case; however, observability does not always imply that it is possible to infer from appropriate
evolutions and measurements all the parameters of the initial state. In fact, for Von Neumann
measurements, there is a natural limit to the number of parameters of the state that can be
derived. This does not improve if we consider measurements of different (and not necessarily
commuting) observables. In this case, the result of the kth measurement still has the form
(57) although now each projection P corresponds to a possibly different observable and S
corresponds to the observable measured last. In this case the first P on the left is always
the projection corresponding to the first measurement and therefore, once again, only at most
n − 1 independent parameters of X1ρ0X

∗
1 can be obtained. We have seen, in the previous

section, that complete information on the initial state may be obtained by coupling the system
with an auxiliary system whose state is known.
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Appendix A. Evaluation of V using a set of generators of L

Let B1, . . . , Bm a set of generators of L. Denote by V̄ the space spanned by the matrices in
(9). It is obvious that

V̄ ⊆ ⊕∞
k=0adk

LiS. (71)

To show

⊕∞
k=0 adk

LiS ⊆ V̄ (72)

we first show that

[V̄,L] ⊆ V̄. (73)
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It is enough to show for elements F in a basis of L given by B1, . . . , Bm, and linearly
independent (repeated) Lie brackets, [F, V̄] ⊆ V̄ . We proceed by induction on the depth of
F. If F is of depth 0, namely F is one of the matrices B1, . . . , Bm then (73) follows from the
definition of V̄ . Now, let us assume (73) true for matrices F of depth �d and let us show it for
matrices F of depth d + 1. In particular, write F as F := [Z, T ], where Z is of depth d and T
is of depth zero. If V̄ is a matrix in V , from the Jacobi identity, we obtain

[V, [Z, T ]] = −[Z, [T , V ]] − [T , [V,Z]] (74)

since both terms on the right-hand side are in V̄ , from the inductive assumption, we have that
the term on the left-hand side is also in V̄ , therefore we have proved (73). Now, from (73) we
have

adLiS := [iS,L] ⊆ V̄ (75)

and from this

ad2
LiS := [[iS,L],L] ⊆ [V̄,L] ⊆ V̄ (76)

where we have used (73). Proceeding this way, we see that for every k � 0

adk
LiS ⊆ V̄ (77)

which proves (72).

Appendix B

Lemma. Let x1, . . . , xn be n non-negative numbers not all equal. Consider the matrix
A(x1, . . . , xn) ∈ R

n!×n whose rows are the permutations of x1, . . . , xn. Then the matrix
A = A(x1, . . . , xn) has rank n.

Proof. Let 2 � r � n be the number of different values assumed by the {xi}i=1,...,n. Denote by
0 � d1 < · · · < dr these values, and let li , for i = 1, . . . , r be the cardinality of {j |xj = di}.
Thus

∑r
i=1 li = n. We will prove our statement on induction on r � 2.

Case r = 2. We prove this part by induction on n � 2. If n = 2, then the statement is easily
proved by computing the determinant of A. Let n > 2. Since all the columns of A sum up to
the same value, which is strictly positive, setting

A′ =
(

1, . . . , 1
A

)
. (78)

We have that

rank A = rank A′ = rank

(
1, . . . , 1

A

)
(79)

where we have set.
Choose a value xī ∈ {x1, . . . , xn}, such that xī = d1, assuming that l1 � 2 (otherwise

choose it so that xī = d2). Assume that we have rearranged the rows of A′ in such a way that
the first element of the second to the (n − 1)! + 1-th row is xī . Note that this can be done since
the rank remains unchanged. Then for i = 2, . . . , (n − 1)! + 1 we subtract from the i-row of
A′ the first row multiplied by xī . Note that if d1 = 0 we leave the matrix unchanged. After
this operation, the matrix A′ has the following form:

A′ =




1 1, . . . , 1
0
... Ã

0
B


 . (80)
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Note that Ã is an (n − 1)! × (n − 1)-matrix with the same structure of A and values
yj = xj − xī � 0, in particular the yj are either 0 or d2 − d1. Thus, by inductive assumption
we have that rank Ã = n − 1, which, in turn, implies rank A′ = n as desired. Had we chosen
xī = d2, we would have had all the values yj � 0 with the two possible values 0 and d1 − d2,
then we would have changed the sign of Ã (which does not affect the rank) and applied the
inductive assumption.

Case r > 2. We assume that the result is true for r − 1. The idea of the proof is similar to the
r = 2 case. Assume again that we have chosen xī ∈ {x1, . . . , xn}, such that xī = d1 and we
have performed to the matrix A′ (defined in (78)) the same operation as in the previous case
to put A′ in the form (80).

Now, if we prove that rank Ã = n − 1 then we get rank A′ = n. As before, Ã is an
(n − 1)! × (n − 1)-matrix which is the same structure as A with values yj = xj − xī � 0 for
j 
= ī. If l1 = 1, then we are done by the inductive assumption since the numbers yj assume
r − 1 different nonnegative values. If l1 > 1, then we perform the same procedure as before
starting with Ã instead of A. Note that Ã has n − 1 different numbers, and is such that d1 = 0
and the cardinality of the {yj = 0} is l1 − 1. Thus we need to repeat this procedure l1 times
and then we can conclude by induction. �
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